Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 22(12): 1470-1477, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38012388

RESUMO

Three-dimensional (3D) hetero-integration technology is poised to revolutionize the field of electronics by stacking functional layers vertically, thereby creating novel 3D circuity architectures with high integration density and unparalleled multifunctionality. However, the conventional 3D integration technique involves complex wafer processing and intricate interlayer wiring. Here we demonstrate monolithic 3D integration of two-dimensional, material-based artificial intelligence (AI)-processing hardware with ultimate integrability and multifunctionality. A total of six layers of transistor and memristor arrays were vertically integrated into a 3D nanosystem to perform AI tasks, by peeling and stacking of AI processing layers made from bottom-up synthesized two-dimensional materials. This fully monolithic-3D-integrated AI system substantially reduces processing time, voltage drops, latency and footprint due to its densely packed AI processing layers with dense interlayer connectivity. The successful demonstration of this monolithic-3D-integrated AI system will not only provide a material-level solution for hetero-integration of electronics, but also pave the way for unprecedented multifunctional computing hardware with ultimate parallelism.

2.
Nat Commun ; 14(1): 3889, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393324

RESUMO

Near-perfect light absorbers (NPLAs), with absorbance, [Formula: see text], of at least 99%, have a wide range of applications ranging from energy and sensing devices to stealth technologies and secure communications. Previous work on NPLAs has mainly relied upon plasmonic structures or patterned metasurfaces, which require complex nanolithography, limiting their practical applications, particularly for large-area platforms. Here, we use the exceptional band nesting effect in TMDs, combined with a Salisbury screen geometry, to demonstrate NPLAs using only two or three uniform atomic layers of transition metal dichalcogenides (TMDs). The key innovation in our design, verified using theoretical calculations, is to stack monolayer TMDs in such a way as to minimize their interlayer coupling, thus preserving their strong band nesting properties. We experimentally demonstrate two feasible routes to controlling the interlayer coupling: twisted TMD bi-layers and TMD/buffer layer/TMD tri-layer heterostructures. Using these approaches, we demonstrate room-temperature values of [Formula: see text]=95% at λ=2.8 eV with theoretically predicted values as high as 99%. Moreover, the chemical variety of TMDs allows us to design NPLAs covering the entire visible range, paving the way for efficient atomically-thin optoelectronics.


Assuntos
Comunicação , Elementos de Transição , Projetos de Pesquisa , Tecnologia
3.
ACS Nano ; 17(11): 9694-9747, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37219929

RESUMO

Two-dimensional (2D) material research is rapidly evolving to broaden the spectrum of emergent 2D systems. Here, we review recent advances in the theory, synthesis, characterization, device, and quantum physics of 2D materials and their heterostructures. First, we shed insight into modeling of defects and intercalants, focusing on their formation pathways and strategic functionalities. We also review machine learning for synthesis and sensing applications of 2D materials. In addition, we highlight important development in the synthesis, processing, and characterization of various 2D materials (e.g., MXnenes, magnetic compounds, epitaxial layers, low-symmetry crystals, etc.) and discuss oxidation and strain gradient engineering in 2D materials. Next, we discuss the optical and phonon properties of 2D materials controlled by material inhomogeneity and give examples of multidimensional imaging and biosensing equipped with machine learning analysis based on 2D platforms. We then provide updates on mix-dimensional heterostructures using 2D building blocks for next-generation logic/memory devices and the quantum anomalous Hall devices of high-quality magnetic topological insulators, followed by advances in small twist-angle homojunctions and their exciting quantum transport. Finally, we provide the perspectives and future work on several topics mentioned in this review.

4.
ACS Nano ; 16(11): 19385-19392, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36278842

RESUMO

The low-temperature growth of materials that support high-performance devices is crucial for advanced semiconductor technologies such as integrated circuits built using monolithic three-dimensional (3D) integration and flexible electronics. However, low growth temperature prohibits sufficient atomic diffusion and directly leads to poor material quality, imposing severe challenges that limit device performance. Here, we demonstrate superior quality growth of 3D semiconductors at growth temperatures reduced by >200 °C by using two-dimensional (2D) materials as intermediate layers to optimize the potential energy barrier for adatom diffusion. We reveal the benefits of maintaining, but reducing, the potential field through the 2D layer, which coupled with the inert surface of the 2D material lowers the kinetic barriers, enabling long-distance atomic diffusion and enhanced material quality at lower growth temperatures. As model systems, GaN and ZnSe, grown using WSe2 and graphene intermediate layers, exhibit larger grains, preferred orientation, reduced strain, and improved carrier mobility, all at temperatures lower by >200 °C compared to direct growth as characterized by diffraction, X-ray photoelectron spectroscopy, Raman, and Hall measurements. The realization of high-performance materials using 2D intermediate layers can enable transformative technologies under thermal budget restrictions, and the 2D/3D heterostructures could enable promising heterostructures for future device designs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...